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: ABSTRACT
.\J ,
An experimental investigation was carried out for the case of )
different triangular protrusions, to study the cavitation character-

istics in the presence of a pressure gradient. The shape factor,jéfL/

and wake parameter fﬁgl;ere calculated from the pressure gradient
and the boundary layer parameters with the assistance of computer
programs based on the method of E. Truckenbrodt. Limited cavitation
numbers were obtained visually for the flow with different cases of
zero, favorable and unfavorable pressure gradiént. For the case

of zero pressure gradient, a power lawv relationship was established
between the limited cavitation number %q*fp;};;d the relative height
~€h¢6§;;ﬁd Reynold's number tased on boundary layar thickness (ggbfé_
In addition, the comparison of the power law obtained by the present
investigation with that by Hol]-fié})was carried out. Furthermore,
a development of the characteristic velocityv thecry wzs made semi-

empirically. For a flow with pressure gradient, the power law

relationship was extended to include the influence of shape factor,
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CHAPTER T

INTRODUCTICN

1.1 Fundamental Characteristics of Cavitation

When the local pressure falls below a critical value, small bubbles
grow by vaporization or by degassing. Bubble growth by vaporization ig
called vaporous cavitation if caused by dynamic pressure reduciion at
essentially a constant temperature. For vaporous cavitztion, which is
of primary interest, the critical value of pressure is less than or
equal to the vapor pressure of the liquid. In the initial steps of
the phenomenon, microbubbles grow in the minimum pressure region and
then when transferred to higher pressure regions by the fluid flow,
the growth will be arrested. The collapse of bubbles will cause
material damage, noise and vibration.

On the other hand, a further reduction in the minimum pressure
will promote the growth of bubbles and may result in large cavities
atrached to the body. The succeeding stages are distinguished from
the initial stage by the term developed cavitation, which may produce
a sericus performance loss when it occurs on hydromachinery, marine

vehicles, etc,

1.2 The Effect of the Surface Irregularities on Cavitation

Basically, surface irregularities may be divided into two categories,
namely, isolated and distributed.
Isolated irregularities will cause high local velocities, low

pressures and turbulence in the neighborhood of the projection.
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Distributed irregularities will change velocities, pressure and
urbulence generally throughout the volume of boundary layer fluid.
Surface irregularities, therefore, advance the onser of cavitation on
a body and reduce its design performance. In general, isolated
irregularities are more harmful to cavitation performance than
distributed irregularities berause the local pressure reduction is

more severe,

1.3 Thesis Objectives

Tlie objective of this thesis 1is to investigate the effect of
pressure gradient on the cavitatioa inception of an isolated irregularity.
In so doing, a curved wall element was attached on one wall in the
water tunnel test section, and triangular protrusions of various sizes
were mounted on the opposite side as isolated irregularities. Im
order to attain the objective, the velocity profiles of the boundary
layer and the pressure gradient were measured in the initial phase of
the test and then subsequently the cavitation number was measured for
the cases in which the tip of the triangular protrusion was both

inside and outside the boundary layer.
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CHAPTER II

PREVIOUS INVESTIGATIONS

2.1 The Influence of Irregularities on Cavitation

Surface irregular.tiss are one of the major factors influencing
cavitation inception. Recent requirements of compact and high speed
hydromachinery have demanded more extensive knowledge of the effect
of irregularities on cavitation.

The initial work in this area was concerned with performance
losses in turbomachinery. Shalnev (1] studied cavitation caused by
surface irregularities in the clearance between the pump blades and
the casing wall. However, his results would only be applicable to
similar boundaries since they were not correlated with boundary
layer parame*ers.

Walker [2] employed the concept of relative height of roughness
(h/68), where h is the height of roughness and & the local boundary
layer thickness. However, his imvestigation was conducted for specific
conditions and was not done systematically,

Holl {3,4] systematically investigated cavitation inception
numbers for two dimensional isclated roughness elements, nanely,
circular arcs and sharp edged triangular strips on a fiat plate,

By placing the roughness at different locations in the boundary layer

of a smouoth wall, he found that the cavitation number could be correlated
with the relative neight of roughness (h/d8), a Reynolds number (Ren)
based on roughness height and local velocity, and the ordinary Xarman-

Pohlhausen type shape factor (H).
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Benson [5] investigated cavitation inception numbers for three-
dimensional isclated roughness elements, namely, hemispheres, cones,
and circular cylinders on a flat plate. He showed that the cavitation
correlated well with a local Reynolds number based on the roughness
height and the flow velocity at the height of the roughness.

The effect of distributed roughness on cavitation is more
complicated than the case of an isolated roughness because there is an
interrelation between the boundary layer development and the degree
of surface roughness. However, several studies have been conducted
since the first publication to appear regarding distributed roughness
by Benson [6].

The classical work in disctributed roughness is that of Arndt [7]
and Arndt and Ippen [8]. From an examination of the results compiled
by Benson [6], Arndt indicated that the cavitation occurring in the
roughness grooves was probably of the gaseous type, and the cavitation
occurring in the boundary layer was vaporous cavitation. Arndt and
Ippen studied the effect of distributed roughness by experiments
with triangular groove irregularities. They showed that cavitation
occurred in the middle of the boundary layer, and correlated the
incipient cavitation number (Oi) with the wall shear stress ccefficient
(Cf) for the rough boundary.

Additional studies concerned with distributed roughness on cavitation
are (1) experiments with sand grain irregularities by Messenger [9]
and Huber [10]; (2) experiments with wire screen irregularities by
Bechtel {11], and (3) the effect of curface roughness on the performance

of hydrofoils by Numachi et al. [12,13]. The investigations by Messenger,
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Huber and Bechtel confirmed the linear relationship bhetween Oi and

Cf which was established by Amdt {7) and Arndt and Ippen [8).

2,2 Velocity Profiles of Boundary layers

The velocity profiles for turbulent boundary layers may be
divided into three parts:

1) Inner layer

2) Outer layer

3) OGverlap layer,

For the inner layer, dominated by viscous shear, Prandtl [14]
deduced that the mean velocity (u) must depend upon the wall shear
stress, the fluid properties, and the distance (y) from the wall.

Thus, he proposed the inner law or so-called law of the wall:

a = f(Tw, P, K. V), (2-1)

where Tw is the shear stress at the wall.

For the outer layer, dominated by turbulent shear, Von Karmian [15)
deduced that the wall tends to act merely as a source of retardation,
reducing the local velocity (u) below the Ireestream value (U) in a
manner which is independent of viscosity (u) but dependent upon the
shear stress at the wall and the distance (y) over which its effect

has diffused. Thus, he proposed the outer, or velocity defect, law:
U=u = f(Tw, o, vy, &), (2-2)

where § is the boundary layer thickness.
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For the overlap layer, Millikan [16] simply specified that the
two functions merge together smoothly over some finite region between
the inner and outer layer.

From dimensional analysis, the non-dimensional form of the law

of the wall and the velocity defect law, respectively, are

= P,y

5‘!; = F(—) (2-3)
and

U~-u

e @ (2-4)
where

Tw
u, = 5 (2-5)

In the overlap layer, a velocity profile can be expressed by
using a mixing length model. The Reynolds stress in turbulent
flow is expressed as,

du
oy

2 du

T, = C oo 2 Y, (2-6)

where £ is a wixing length and C is a coefficient of order cne. This

is called Prandtl's mixing-length hypothesis. The eddies involved in
momentum transfer have characteristic vorticities of order v'/2 and they
maintain their vorticity because of thefr interaction with the mean

shear (g%), so that

v' . 3u (=7
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where v' is the instantaceous velocity in the y direction.

From equations (2~6) and {2-7)

= ’ ~3‘_‘£ .
Tt o v Slay . (2-8)

On the assumption that u' and v' are well correlated, the Reynold's

stress will be

T, = puS, ' (2-9)

where u' is the instantaneous velocity in the x direction and u, is
the wall-friction velocity,
From equations (2-8) and (2-9)
_].'_.a-—l-l-a_];.l., (2_10)
u, 9y ky
where k is a constant.
After integrating equation (2-10),
u 1
-— = =42n y + const, (2-11)
u, k

Furthermore, equation (2-11) can be written as

- yu
u 1 *
—— IR _——2, ——— {
u* K n v h L,
where k is known as the constant of Von Kdrman and B is an empirical
constant. Nikuradse {17] in 1930 found that the constants k and B

were 0.40 and 5.5 and Coles {[18] in 1955 employed 0.41 and 5.0 for

k and B, respectively.
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2,3 The Law of the Wake for Turbulent Boundary Layers

The outer law is more sensitive to external parameters, particularly
the pressure gradient, as shown in Fig. 6-4, p. 470 of Ref. (19].

Clauser [20,21] was the first investigator to introduce new
parameters involving the pressure gradient for the outer layer;

these are given by

U-u_ .y 8 dp
™ 5,(6 . T dx) . (2-13)

After further investigation, he concluded that & should be replaced

by the displacement thickness. Therfore, the accepted parameter (f) is

*
-8 4
B = T (2-14)

A shape factor (G) which remains constant in an equilibrium

boundary layer was defined by Clauser as

1 (v - w2
o[ esB @15
o u
where
“u-% * /7
A=f u’ -dy = § S (2-16)
o * f

Equation (2-15) can be related to the ordinary Karmin-Pohlhausen type

shape factor (H) by

c=/2 1 -5, (2-17)
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The shape factor (H) is not constant in an equilibrium boundary layer

because the skin friction varies with x. It is said that G is a better

shape factor than H in terms of predicting the properties of equilibrium

boundary layers., Nash [22] zpproximated G by using the pressure

gradient
G =61 v8+1.81-1.7. (2-18)

Furthermore, he noted that the outer layer has a wakelike structure

*
and its eddy viscosity (ut) scaled with & and U, Thus,

*
Moo= Keud (2-19)

where K 1is a constant.

. Mellor and Gibson [23] combined equations (2-13) and (2-19) into
a theory of equilibrium wake profiles, which is in good agreement
with experimental data, as shown in Fig. 6-7, p. 479 of Ref. [19].
The equilibrium concept s valid not only for positive values of B but
also for negative B, as shown by Stratford [24]), and Herring and
Nerbury [25], for example.

Coles (26] combined the wall component and the wake component

with the wake function (W) and the wake parameter (II) in order to

express the velocity profile in the form

v 1 yu*k m..y .
Il"; = -l;. ¢n L\_)_— + B 4+ X W(,S) R (2-—20)

The wake function is norm~lized such that it is zero at the wall and

attains a value of 2.0 at y = &, As shown by Ccles, the wake function
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is approximated by

2 Iy
zsm(_z-(s))

[

W(go (2-21)

which is quite a.curate for routine use as shown in Fig. 6-8, p. 481
of Ref. [19]. The wake parameter derived by Coles and Hirst {27] is

approximated by the empirical expression
T=0.8(8+0.5°7, (2-22)

This formula is arranged to fit the theoretical requirement of Mellor
and Gibson [23] i.e., the wake must vanish at B = -0.5, corresponding

to an asymptotically large favorable gradient. For a very large B,
where there are no equilibrium data, the wake parameter was approximaced

by the relation

mI=1+2.1/R8 . (2-23)

e apa i e
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CHAPTER III

PRELIMINARY CONSIDERATIONS

3.1 Definition of Cavitation Number

Cavitation is defined as the vapor and gas-filled voids occurring
in a liquid when the local pressure falls below the vapor pressure,
based on the bulk temperature of the fluid. The Euler number which
describes tnis state may be written as

P -P
v

[+ )

0= ———7, (3-1)
1/2 v

where 0 is defined as the cavitation number, P_ and U_ are a reference
pressure and velocity, respectively. The vapor pressure (Pv) and
liquid mass density (p) correspond to the bulk temperature of the
liquid.

The cavitation number is a valuable parameter in the correlation
of cavitation data.

If 0 is sufficiently large, there is no evidence of cavitation;
whereas 1if 0 is sufficiently small, the cavitation can be well
developed. Limited cavitatilon occurs at an intermediate value of
the cavitation number where the amount of cavitation is minimized.
The cavitation number corresponding to this state is the limited

cavitation number (OQ) given by

— . (3-2)
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3.2 Incipient Cavitation and Desinent Cavitation

There are two ways to determine the cavitation number at a constant
velocity in a water tunnel. The first method 1s to establish a
velocity in the test section at a noncavitating condition and then
decrease the tunnel pressure until cavitation occurs on the test
element. The cavitation number thus determined is called the incipient
cavitation number (ci). The second method is to establish a velocity
in the test section at a condition of well-developed cavitation on
the test element. The pressure is increased until the cavitation
disappears. This method determines the desinent cavitation number (Od).
Experience shows that 0, is often more consistent than O, and tends

d i

to be the upper bound of O Therefore, in many cavitation experiments,

g
Od is adopted as the limited cavitation number (OQ). Differences
between incipient and desinent cavitarion arc¢ due to cavitation

hysteresis [28].

3.3 Analysis of Isolated Roughness

Isolated roughness may be divided into two categories, namely,
streamlined or non-separating surface protrusions and separating such
as a triangular element. For the former cases, cavitation occurs on
the surface of the protrasion. For the latter case, cavitation occurs
in the shear layer downstream from the point of separation.

The frozen-streamline theory (FST) developed by Holl [29,301 has
been used to analyze the major characteristice of the flow about a two-
dimensional nonscharated surface protrusion. Further an approximate
method developed by Holl [4,29], which is called the characteristic

velocity theory (CVT), was able to correlate the limited cavitation

T T
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number more successfully than FST, for a non-streamlined surface

protrusion,

3.4 (Characteriscic Velocity Theory

Holl (4] developed the theory based on the assumption of frozen
streamlines. The actual flow about the roughness element on a flat
plate in rotational flow is showm in Figure 3-1. In order to gain a
aimple expression for the minimum pressure coeffiszient of the
irregularity in rotational flow on a flat plate (C ) an approximate
rotational flow is constructed and, in addition, a cg;:aZteristic
velocity (UC) ts introducad as shown in Fig. 3-2.

Between the flow at infinity along the wall and minimum pressure

oint, Bernoulli's equation is valid in the following foir.:
P ’ q

1 2 1, 2 .
Pt = PRt 3 Ypax - (3-3)
t
C can be expressed in the form
Pmin—o
U . 2 2
c - 5 - G (3-4)
Pmin_o oo o

If we assume that the shapes of the streamlines are the same in both

tte rocational «zad irrorational flow, then ve can assume thact

u 2 max 2
P =GP . (3-5)
nax

Substirucion of equation (3-5) into equation (3-4) results in

N T St X
RPN Phe . _J
X R et s es e JUCTNRE VR RO GET YRR
" N

BEVFREAET. 1T e it b b b T i e o
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FLOW AY INFINITY

A

Figure 3~1. Rotational Flow about a Surface Irregularity om a Flat
Plate.

FLOW AT INFINITY

Ue

i
%////////Wlf

Figur~ 3-2. Approximate Rotational Flow about a Surface Irregularity
on a Flat Plate.
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, (3-6)

pmin—o

is the minimum pressure coefficient of the irregularity

in irrotational flow at a flat plate. If cavitation is assumed to

occur at vapor pressure, i.,e., that P

pressure coefficient may be replaced

min-R = pv’ then the minimum

by the limited cavitation number

on a flat plate and equation {(3-6) then becomes

Uc 2
= — ! -
oQ,fp (Ua? dlfp (3-1)
where Oéfp is the limited cavitation number for the roughness in the

absence of a boundary layer, that is
is the square root of the mean value
upstream of the protrusion over some

assumed that Lc is equal to h so that

h/§ = e, Holl then assumed that U,
of the square of the velucity

characteristic length, LC. Holl

u © dy (3-8)

For turbulent flat plate boundary layers, power law veloéity

profiles are reasonable approximations to the actual velocity profiles

at infinity except at the wall where the slope is infinite. Thu we

have

cie |

(3-9)

e e i i s
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Employing equation (3-8) in equation (3-7) for the power profiles

yields
% h
1 bPol for <1 ' (3-10)
Olfp T (6) LEp 8
and
8y - Lo n
szp (1 - B (1 - H)]OQpr for 3 >1 . (3-11)

The shape factor (H) defined as the ratio of the displacement thickness

(8*) and the momentum thickness (8) has the value

2
H = mtl (3-12)
m

for the power law velocity profiles given by equation (3-9).
The theory may be employed to obtain a rough estimate of Upr

for a separated protrxusion element.

3.5 General Estimation of the Limited Cavitation Number on a Flat Plate

for Isolated Roughness

We would expect that the cavitation number for an isolated roughness
should be a function of the relative roughness (h/¢) and the boundary
layer shape factrr (H), from the frczen-streamline and charzcteristic
welocity theories. In addition, Reyncld's number (Reh), based on the
height of roughness, should be added to the function, according co the
studies by Kermeen and Parkin [31}, and Arndt [32]). Thus, we would
expect the cavitation number for isolated roughness on a flat plate to

have the general form

e .
BT |

e A S s i, i
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g, = £/% u, Re,) (3-13)
LEp 8§ 7 TUh
which was proposed by Holl [29,30]. As a first approach, a simple
power law equation for an isolated roughness on a flat plate may be
given as
a b
h Us 1
Glfp = CC@) G;ﬁ ;E R (3-14)

where C, a, b, and d are constants that depend on the shape of the

irregularity.

3.6 Superposition Equation

Consider a surface irregularity located at some point on a parent
body as shown in Fig. 3-3. The minimum pressure (Pmin-R) occurs on
the surface irregularity or in the wake of the irregularity if the flow

is locally separating due to the roughness. The pressure difference

Pmin—R - Pu)can be written as

P ing ™ Pw= P =P+ P . o ~P (3-15)
where P is the pressure in the vicinity of the roughness which may be
thought of as the "local pressure at infianity" for the roughness element.

R
Dividing equation (3-15) by 1/2 pU_ yields

g - ' - P - P 2
rmm_R sz E © P oin-R Ly (3-16) :
2 2 2 v/ ’
/2 pu 1/2 pU_ 1/2 pu w i
‘é
!
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Pmin-R

9P / L,

SURFACE /
IRREGULARITY

/ PARENT BODY

. .

Figure 3-3. A Surface Irregularity on a Parent Body.
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where U is the velccity at the edge of boundary layer in the vicinity
of roughness which may be thought of as the "local velocity at infinity”
for the surface irregularity. In terms of pressure coefficients,

equation (3-16) can be written in the following form

c = C s + (1-C )cC . (3-17)
Pmin-R P Pnin-o

Furthermore, 1f cavitation is assumed to occur at vapor pressure,

then the minimum pressure coefficients may be replaced by cavitation

numbers and equation (3-17) then becomes

O, = - Cps + (1-Cps) 02 (3-18)

LR fp

This is the so-called superposition equation and was derived by
Holl [29].

The equation is very useful in estimating the cavitation performance
of a hydronautical body with surface irregularities, provided the smooth-
body pressure coefficients (Cps) and the limited cavitation number of
the surface 1irregularity on a flat plate (szp) are known.

This equation has been revised by Arndt, Holl, Bohn, and Bechtel
[33) to include possible bubble dynamic effects. The revised equation

is

04, =C -0+ (1-C ) g (3-19)
ps ps

R Lfp

The function 2 accounts for possible bubble dynamic effects and is

defined as

‘ it . " - e Vs o s AR 4 IR R« i L B e
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Pv - P in-r
) = -l 07T (3-20)

1/2 OU2

[+ o4

where Pm is the minimum pressure produced by the roughness.

in-r

»
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CHAPTER IV

EXPERIMENTAL EQUIPMENT AND PROCEDURES

4.1 General Description of Water Tunnel

The experiments in this study were performed in the Garfield Thomas
Water Tunnel Building of the Applied Research Laboratory located at
The Pennsylvania State University. The 12-inch diameter water tunnel
facility was designed to accommodate circular (12-inch) and rectangular
(4.5-inch x 20-inch) test sections. A general view of this facility is
shown in Fig. 4-1. The rectangular test section, shown in Fig. 4-2
and Fig. 4-3, was used throughout this study.

The flow velocity can be changed from 10 to 70 fps by a variable
speed mixed-flow pump. The pressure in the test section can be varied
from 3 to 60 psia by means of a partially filled water tank having an
air chamber on top and connected to the tunnel circuit at the bottom.
Alterations of the air pressure in the tank changes the pressure in
the entire system.

The gas content was controlled by using a Cochrane Ccld-Water
Degasifier located in a bypass circuit. The system can decrease the
total gas content to 2 moles of air per lO6 moles of water (PPM).

For more detailed information, see reference [34].

4.2 Details of the Test Coufigurations

The experimental arrangement in the rectangular test section was
composed of a triangular protrusion, the base for the protrusion and a

curved-wall element. The test section fitted with two 10-inch by 20-inch

TR e i B b et et MR, i i S bl

S s - B i WM € e e Tk




Figure 4-1.

Photograph of the 4.5-Inch by 20-Inch Water
Applied Research Laboratory.

Tunnel,
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plexiglass windows with an additional 2-inch by 20-inch window on
the bottom panel. This arrangement is sketched in Fig. 4-4.

4.2.1 Curved Wall. The curved wall was made from plexiglass.
The dimensions of the wall are shown in Fig. 4-5. In order to measure
the velocity profiles at each location on the flat plate, seven holes
were drilled in the wall for a total head tube. These locations are
designated 3TA.I, II, III, IV, V, VI and VII, as shown in Fig. 4-6.
Additional details of the design are presented in Appendix A.

4.2.” Triangular Protrusion. The triangular protrusions used

in this study were made from plexiglass. A photograph of the pro-
trusion is shown in Fig. 4-7. The protrusions were of the same shape
as those used by Holl [29]. Eight roughness heights were employed in
the tests; namely, 1/100, 2/100, 3/100, 5/100, 7/100, 10/100, 15/100
and 30/100 inches and were mounted on the base one at a time for each
experiment. The roughness locations correspond to the position of
the leading edge of the total head tube. Additional details of the

design are presented in Appendix A.

4.3 Measurement of the Velocity at Infinity in the Test Section

Infinity in the trst section was uefined as 6.40 inches upstream
from the leading edge of the curved wall for all experiments. The
velocity was determined by the d.fference between the static pressure
at the infinity point with the curved wall (P]) and the static pressure
far upstream of the infinity point (PO). The relationship between the
static pressure difference (PO - P;) and the dynamic pressure at

g1

infinity with the curved wall (% MU ) was measured three times by

using 2 pitot tube. However, since cavitation occurreud at the pitot

N PR chioaat B L e b A, i A 1 S, o n s as s s
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Figure 4-7. Photograph of the Triangular Protrusion.
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tube for flow velocities greater than 40 fps, the measurements wvere
obtained for velocities from 20 to 38 fps. The sketch of the measure-

ment stations is shown in Fig. 4-8.

4.4 Measurement of the Pressure Coefficient

The pressure coefficients for the test section were determined
by using a total head tube and the static taps oo the flat plate. The
stazlc taps are located between the measuring stations on a smooth
plexiglass plate, as shown in Fig. 4-9. The measurements by the total
head tube and the static taps were not made at the same time because
the flow is disturbed by the presence of a total head tube. First
the static pressure at each station was measurad for different flow
velocities ranging from 20 fps to 60 fps and then the dynami: pressure

at each station was measured.

4.5 Measurement of the Velocity Profile

Whenever the measurements of the mean velocity profile for each
station were made, the positions at which the tip of the total head tube
just touches the plate for both inward and outw~ard movement of the
traversers were carefully determined with the use of a microscope.

This was essential in order to know the back-lash of the traversing
gear and also to determine the initial measuring point. This procedure
was of major importance in establishing accurate locations of the total
head tube.

The velocity profiles were measured by traversing the boundary
layer with a probe which was fabricated from a tube of rectangular

cross section with an external size of (.018 by 0.083 inches. The
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-

traversing device pictured in Fig. 4-10 allowed the positioning of
the total head tube within 0.001 inch.

For each velocity profile, the total head tube position was
zeroed on the plate and then moved outward in increments of 9.010 inch
for a few initial measuring points, after which it was moved in steps
of either 0.020 or 0.050 inch until the edge of the boundary layer
was reached, in other words, until the total pressure became constant.
The measurements were repeated as the tube was moved inward toward

the wall in the same increments as employed in the outward motion. A

third data get was obtained as the probe was again moved outwards.
The final profiles were determined from the average of these three
sets of data. While making measurements, the tunnel pressure was
maintained at 40 psia and the water temperature was recorded before

and after each profile run.

4.6 Visual Observation of Desinent Cavitation

Before observing cavitation, the gas content in the water tunnel
was always measured. If the value was more than &4 p.p.m., purging
the water of gas was done before the experiment by using the tunnel
degasser. The gas content was measured by a ''Thomas" Van Slyke
Manometric Apparatus using a 10 cc sample.

As previously mentioned, there are two methods by which the critical
cavitation number may be determined, i.e., inception and desinence.
However, the desinence method was used to determine the limited cavitation

number during the entire test because of repeatability.
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At the start of the observation, a strobe light was used to aid in
visually observing cavitation. When cavitation occurred along the top
edge of the triangular protrusion, which appeared as luminous streaks
originating several inches dowmstream of the protrusion, another type
of cavitation appeared at both ends of the protrusion. These two types
of cavitation jcined together downstream. Special care was taken to
see that the cavitation caused by the ends was not mistaken for that
caused by the top edge of the protrusion.

Cavitation disappearance was defined as the absence of cavitation
at the top edge of the protrusion, for less than 30 seconds. Throughout
the experiment, the observations were done by the same person. The
tunnel pressure was recorded at the defined infinity point. For each
velocity setting, this pressure was lowered and raised seven times,
with the final desinent cavitation number being based on the average
pressure obtained by this procedure. 1In addition to the pressure
measurements, the gas content and temperature were measured before and
after each run. Since one side of the transducer was open to the
atmosphere while taking the pressure measurements, it was necessary
to record the barometric pressure several times each day.

A photograph of the cavitation phenomenon which occurred on the

triangular protrusion is shown in Fig. 4-11.

m
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Figure 4-11. Photograph of Cavitation Phenomenon on a
Triangular Protrusion.
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CHAPTER V

. PRESENTATION AND DISCUSSION OF RESULTS

5.1 Velocity at Infirity in the Test Section

As iIndicated previously, Infinity in the test section was 6.40
inches upstream from the leading edge of curved wall (see section 4.3).
The velocity at infinity cannot be measured directly by using the
reference static pressure in the test section because of the presence
of the curved wall in the test section.

The relationship between the static pressure difference (PO - P)
and the dynamic pressure at infinity (1/2 DUL?) was empirically
established from a set of experiments (see Fig. 4--8) and is of the
form

1/2 ouy? = 0.9708 (2 - BL), (5-1)

where U' and P} are the velocity and pressure at infinity with the
curved wall, respectively, as sketched in Fig. 5.1. Tne values of
the dynamic pressure and static pressure difference are tabulated in
Table 5.1.

The accuracy of the coefficient (0.9708) was invesligated by
applying Bernoulli's ecuation and also by utilizing the Douglas-
Neumann computer program. The relationship between the dynamic
pressure and static pressure without the curved wall can be established
from Bernoulli's equation by knowing the ratio of cross-sectional area

at the infinity point to that far upstream of the infinity point. Thus
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TABLE 5-1
RELATIONSHIP BETWEEN 1/29q;2 AND (PO—E;)
DATA
SET 1 2 3
'2 12 '2
1/2pY P_-P, 1/2pU, Py 1/200, P P
(volts) (volts) (volts) (volts) (volts) (volts)
Velocity
(fps)
20 0.9446 0.9850 0.9255 0.9780 - -
23 1.2435 1.3165 1.2515 1.3230 1.20616 1.3610
25 1.4859 1.5537 1.5073 1.5715 1.5596 1.6580
28 2.0154 2.0856 2.0170 2.0912 1.9721 2.0800
30 2.3290 2.4206 2.3027 2.4085 2.3467 2 .4400
33 2.7580 2.8450 2.7495 2.8650 2.6712 2.8113
35 3.0054 3.1231 3.0113 3.1460 2.9897 3.1320
38 3.4888 3.6240 3.5039 3.6250 3.4886 3.6300
l/ZOQ;2/P0~R; 0.9663 0.9693 0.9764

L
Average value of 1/20qm2/P0-P; = 0.9708%

*Standard deviation = 0.0052
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1/2 U2 = 1.0079 (? -P) . (5-2)

However, since the velocity at infinity is slightly affected by the
presence of the curved wall, the modified velocity at infinity was

calculated by the Douglas-Neumann computer program and the result is

0.9833 . (5-3)

8] S
1

From equations (5-2) and (5-3), the relationship between the dynamic
pressure and the static pressure difference can be expressed in the

form

2
4oL
1/2 y!"™ = 0.9745 (Po - P . (5-4)
It is felt that the coefficient {(0.9708) in equation (5-1) is very
accurate, because there is insignificant difference between equations
(5-1) and (5-4). Hence, from equations (3-1) and (5-3), the relation-
ship which was used during the entire experiment was obtained in the

form of

; 2 -
1/2 pu_ =1.0041 (P0 - gr) . (5-5)

5.2 Pressure Distribu fon ar' Gradient

The pressure coefficlent in the fest section is expressed as

P - P
C = - (5-9)
172 pU_

where the static pressure (p) was measured at each scatinn. Substituting
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equation (5-5) into equation (5-6) yields

. P- P
r 1.0041 (PQ - P

(5-7)

In order to check the reliability of equation (5-7), the pressure
coefficient was also calculated frowm the velocity at the edge of the
boundary layer (U), shown in Fig. 5-2, which was measured by the total

head tube. The pressure coefficient 1s expressed in the form of

2

- U -
Cp—l—(Uw) . (5-8)

As shown in Fig. 5-3, these pressure coefficients derived from equations
(5-7) and (5-8) are in fairly good agreement. So the pressure coefficient
obtaineu by using the static tap was used during the entire experiment
and tabulated in Table 5-2.

However, in comparison with the calculated pressure coefficient
which was used for designing the curved wail, the measuraed coefficients
differ significantly. The difference between the experimental and
calculated values is greater for the pressure gradient than for the
pressure distrabution. These two pressure gradients are shown in
Fig. 5-4. Siace STA. III and V have almost the same pressure gradient
as that of STA. IV, the experiment for observing cavitaticn was not

carried out for these two stations.

5.3 Boundary layer Parameters on the T"late

5.3.1 Boundarv Layer Thickness. The bourndary layer thickness

was defined tn he the distance from ths wall where the mean local

b | AV S R T 8 TR A S W -
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velocity is 99% of the velocity at the edge of the boundary layer.

The boundary layer thickness (8) for each station was obtained from

the velocity orofiles. Furthermore, these values were corrected with
respect to the velocity at infinity (U ) equal to 40 fps at a temperature
of 74°F.

The equation used for the correction is

5 = 0.37x

(5-8)
Cux/ w3

which describes the growth of a turbulent boundary layer thickness on a
flat plate. The corrected values are shown in Table 5-3 and Fig. 5-3.

5.3.2 Momentum Thickness. Other parameters such as the displace-

*
ment thickness (8 ) and the momentum thickness (8) are given by

* 6 u
§ = f Q-9 & (5-9)
0
and 5 — -
u, ,u
8 = Io(l - 3)("6) dy , (5-10)

regspectively, and these could not be obtained from the velocity profiles.
The minimum ratios between the mean velocity (u) and the velocity at

the edge of btoundary layer should at least be less than 0.6 for this
experiment in order to obtain the momentum thickness (8) and the
displacement thickness (6*). Unfortunately, the minimum values

obtained by the experiment are more than 0.8. To circumvent this
problem, the method of E. Truckenbrodt was employed to obtain the

*
momentum thickness (68) anda the displacement thickness (8 ). In so doing,

N b g b ot bt B e e i N e e
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TABLE 5-3

BOUNDARY LAYER THICKNESS AT EACH STATION

st at U,=40fps

X U Temp. 5+ T=740F

STA (inches) (fps) °r) (inches)  (inches)
1 1.7 43.07 76.5 0.125 0.124
I1 4.3 45,22 69.5 0.154 0.156
I11 5.6 42.91 75.0 0.160 0.162
v 7.0 42.60 74.0 0.165 0.167
\ 8.7 42.52 74.0 0.180 0.183
Vi 111 41.89 74.0 0.230 0.233
VIl 13.6 40.84 75.0 0.370 0.374

+ § as measured for each TJ.

++ & at Uge40fps, T=74°F was obtained by using equation (5-8) and
Fig. 5-2 with respect to the velocity at infinity (U) equal
to 40 fps at the temperature of 74°F.

i LT FONCR VY
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two computer programs based on the method of E. Truckenbrode {351 were
used. One is the MLB program which was used mainly for calculating

the above parameters, and the other 1s an auxiliary for the MLB program,
the RJID program.

First of all, the MLB computer program was used to calculate the
momentum thickness (9) and the boundary layer thickness (8). The
origin of the boundary layer was shifted back and forth in order to
obtain the best agreement between calculated and experimental values
of the boundary layer thickness. After these adjustments, the best
agreement between calculated and measured values of the boundary
layer thickness was obtained when the origin for the calculated
values was one half chord length upstream of the leading edge of the
curved wall, as shown in Fig. 5-5. Then the momentum thickness )
was calculated for the boundary layer thickness employing the origin
established by the above meihod.

*
5.3.3 Shape Factors. Since the displacement thickness (&)

could not be obtained by the MLB computer program, the RJD computer
program was used to calculate the displacement thickness and shape
factor (H). By knowing the pressure distribution, the momentum
thickness and a aew shape factor {L) can be calculated by using the RJD

computer program. The shape factor (1) is expressed in the form

[ QH , (5-11)

where

o S ks ol 5 i

NCRTEI R YU )
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50
5**
H= 5
and the 2nergy thickness is given by
$ -2 -
ok
8 =J' 1-5) 2ay . (5-12)
UZ U
o

Initially, the momentum thickness was calculated for the origin
established for the boundary layer thickness. As can be seen from
Fig. 5-6, the difference between the momentum thickness calculated by
the two computer programs is not irnsignificant. This is due t¢ the
fact that the MLB program utilizes a somewhat different skin friction
coefficient (Cf) than that employed in the RJD program which is based
on Cf used by Truckenbrodt, However, the calculation of the shape
factor (H) via the determination of the other shape factor (L) showm
in Fig. 5-7 was nct sensitive to these diffecences in the momentum
thickness (8) as evidenced by the nearly equal values of H tabulated
in Table 5-4. This lack of sensitivity to variations in H may be due
to the fact that the slope of 0 versus X shown in Fig. 5-6 is nearly
the same for both methods of calculation.

It is felt that the determination of 6* and O employing the method
of E. Truckenbredt as described above is fairly accurate oince it is
based upon an origin determined by the experimertal values of § as
described in Section 5.3.? (see Table 5-5).

5.3.4 Shear Stress at the Wall. The experimental values for

the shear stress at the wall (Tw) can be approximated by the

empirical formula
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Figure 5-7,

Relation Betwaen the Shape Factors
(H) and (L) for Turbulent Flow.
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TABLE 5-5

*
BOUNDARY LAYER PARAMETERS AT FACH STATION

x § % 8 H
STA p (inches) (inches) (inches)
I 0.19 0.124 0.0122 0.0091 1.34
I1 0.25 0.156 0.0148 0.0111 1.33
IT1 0.33 0.162 0.0162 0.0123 1,32
v 0.41 0.167 0.0183 0.0137 1.335
' 0.51 0.183 0.0213 0.0159 1.34
VI 0.65 0.233 0.0270 0.0197 1.37
VII 0.80 0.374 0.0354 0.0255 1.39

*These parameters were calculated for a velocity at infinity (U ) of
40 fps (see Section 5.3.1)

e T Sl i, Sl i m b, . s i b A
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~ = 0.123 x 10
2

oU

~0.678H (L§5-0.268 (5-13)
which was given bv Ludwieg-Tillman {36]). The shear gtress at the

wall was calcuiated by substituting the bourdary layer parameters which
wore obtained in Section $.3.2 and 5.3.3 into equation (5-13)., Further-
more, Clauser's equilibrium parameter (B), the shape factor (G) and

the wake parameter ([l were calculated from equations (2-14), (2-18)

and (2~22), respectivelv, and are tabulated in Table 5-6 and Table

37,

5.4 Cavitzrion Number

5.4.1 Cavitation Number for the Case of Zero Pressure Gradieant.

The cavitation number (¢,_ ) for the case nf zero pressure gradient

L£p
was measured ac STA. IV, and is tsbulated in Table 5-8. The effect of
the relative height (h/8) has henn known ¢o be the most dominant factor ;
)

for this case and the relatiouship between the cavitation number (Glfp
and the relative height for this investigation (h/8) is shown by the
experimental data in Fig. 5-8. A comparison of the present result
with that of Ref. (29) was carried out and is shown in Fig. 5-9.

For these two investigations, Fig. 5-8 and Fig. 5-9 show that the
relationship between the log of the cavitation number and the log

of the relative height is !inear. By neglecting the effect of Reynold's

rumber, rhese relationships can be expressed in the form

0,. = constant (Qf)a . (5-14)
Afp )

e b TR ek T etk kel S b Al AR b & . AT T P RN B I T T U R ey u\.‘aa:;‘._.d}ﬂ
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TABLE 5-6

WALL SHEAR STRESS AT EACH STATION

STA X v 0 H W,

c (ft/sec) (isiches) (1b/ft™)
I 0.106 43.30 0.0091 1.34 3.366
1Y 0.25 45,31 0.0111 1.33 3.508
IIT 0.33 45.83 0.0123 1.32 3.537
v 0.41 46.04 0.0137 1.335 3.381
\ 0.51 45.92 0.0159 1.34 3.209
VI 0.65 45.17 0.0197 1.37 2.811
Vil 0.80 43.69 0.0255 1.39 2.401

* These values were calculated by using equation (5-13) (see Section
5.3.4).
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TABLE 5-8

LIMITED CAVITATION DATA STA. IV (-gfl;; = Q)

U Gas Water Standard
h o 4] Content  Temp. o. % Deviation
s {fps) (fps) (ppm) °r Ltp of Oifp
0.058 29.77 34.27 2.90 0.270 0.004
0.060 38.82 44 .69 to 68.0 0.292 0.017
0.u63 60. 36 69.48 3.28 0.322 0.013
¢.290 29.88 34.39 1.50 0.646 0.011
0.299 38.59 44,42 to 70.0 0.666 0.015
0.312 61.26 70.51 2.93 0.676 0.004
0.581 29.73 34.22 1.98 0.912 0.026
0.599 38.38 44 .18 to 67.5 0.901 0.030
0.625 $0.27 69.37 3.12 0.872 0.014
1.73¢ 29,46 33.91 2.13 1.83% 0.090
1.790 38.06 43,81 to 68.0 1.847 0.144
- - - 4,50 ~ -

* These are mean values for seven measurements.
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The power number 'a' and the correlation coefficient (R) were calculated

by using
- n h n
n T 103(?? { log(ozfp)
h i=1 i i=1 i
z 103(?? log (02 Y -
i=1 i fey n
a-= 3 (5-15)
ra h
pX log(g)i
a 2 i=1
Z Eog(%)_] - -
i=1Lk ~
and
h
a Glog(g)
R = 5 (5-16)
1og(02fp)
i o}
where a was obtained by the least squares method, Olog(%) and 10g(°£fP)

are standard deviations of log(%) and log(olfp), respect ively.

'a' is 0.53 for the correlation coefficient 0.9969 for the present
experiment whereas 'a' has the value 0.40 for the experiment of Ref.
[29)]. This difference in ‘a’' for the two experiments may be due to gas
content effects. The present experiments were carried out with the
gas contents between 1.91 ppm and 5.52 ppm. On the other hand, the
experiments of Ref. [29]} were conducted for gas contents of 3.46 ppm
to 15.66 ppm. For comparison purposes the data of Ref. [29] were
corrected for different gas contents. The equation used for the

[0 3 - 3.71

g =g - (5-17)
R-corr R 1/2 pqi

k250 B
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where k is 0.104, or is a limited cavitation number of Ref. [29],

and Op is a gas content of Ref. ([29]. The derivation of equation (5-17)
1s demonstrated in Appendix B. The corrected cavitation numbers are
shown in Fig. 5-10, which demonstrates that the slope of the variable
between the log of the corrected cavitation number to the log of the
relative height becomes almost the same as the present one. It

might be said that 0.53 is a more universal value for a specific gas
content, {.e., & = 3,71 ppm than the value of 0.40 employed in Ref.

[33]. Thus

h 0.53
o] = constant (39 (5-18)

LEp .
However, the effect 0of Reynold's number based on boundary layer
thickness should be accounted for to obtain a more accurate relation-
shif. This will be discussed in Section 5.4.3.

5.4.,2 Effect of Pressure Gradient on Cavitation. The cavitation

numbers for the case of favorable and unfavorable pressure gradient
vere measured at STA. T and STA. Vil and are tabulated in Tables 5-9
and 5-10, respectively, Fig. 5-11 shows that the relationships

between the log of the cavitation number and the log of the relative
height are almost linear. The slopes are 0.576 for the correlation
coefficient (R) of 0.9885 for the case of a favorable pressure gradient,
and 0.481 for R equal to 0.9882 for the case of an unfavorable pressure
gradient. The cavitation data for zero pressure gradient lies in
between the data show.a in Fig. 5-11 and never exceeds those for the

case of unfavorable pressure gradient. In other words, the cavitation

numbers tend to increase with the pressure gradient.

NI STT S . TR W S SeR
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TABLE 5-9

LIMITED CAVITATION DATA, STA. I <§§ < 0)

U Gas Water Standard
h ked U Content Temp. Glf * Deviat ion
5 (fps) (fps) (ppm) (°F) P of Oge
0.07¢% 30.07 35.53 2.60 0.247 C.016
0.081 38. 82 42.07 to 68.0 0,265 0.0056
0.085 60. 89 €5.98 3.90 0.210 0.005
0.156 29.¢€0 32.07 2.91 0.503 0.010
0.161 37.49 40.62 to 67.0 0.545 0.002
.168 59.39 64.35 4,05 0.603 0.004
0.548 29.31 31,76 1.98 0.886 0.017
0.565 37.89 41.06 to 68.5 0.886 0.006
0.590 59.01 63.88 2.72 0.946 0.007
’ 0.782 29.63 32.10 3.85 1.040 0.014
0. 806 38.31 41.51 to 69.5 1.065 0.013
0,841 59,32 64.27 4.50 1.107 0.025
2.347 29.41 31.87 2.52 2.130 0.061
2.420 37.79 40.95 to 71.5 2.125 0.053
2.526 47.98 51.99 3.52 2.470 0.056

* Thes2 are mean values for seven measurements.




. TABLE 5-10

LIMITED CAVITATION DATA, STA. VII (g& > G)

U Gas Water Standard

h = U Content Temp. . * Deviation

$ (fps) (fps) (ppm) (°F) 2fp of Okfp
0.026 36.77 42.35 2.25 0.268 0.006
.027 4¢.30 53,84 to 71.0 0.281 0.001
0.027 60.83 66. 44 3.15 0.281 0.009
;& 0.051 30.07 32.84 3.30 0.465 0.008
¥ 0.052 38.82 42,40 to 66.0 0.506 0.003
f 0.055 61.10 66.74 5.21 0.47/ 0.010
k3 0.180 29.82 32.57 3.98 0.750 0.011
X 9.186 37.85 41.34 to 72.0 0.787 0.010
£ 0.194 59.92 65.45 5.52 0.851 0.005
- 0.389 30.01 32.78 3,15 1.012 0.030
0.401 38.87 42.45 to 70.0 0.985 0.012

- - - 5.32 - -

k& 0.778 29.46 32.18 2.36 1.612 0.082
: 0.802 37.89 41.58 to 70.0 1.580C 0.035
0.837 48.36 52, 82 3.81 1.697 0.020

* These are mean values for seven measurements.
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According to equation (3-7) used in the characteristic velocity
theory, that is,

u 2

= (L ' -
%ty = T g, (3-7)

the velocity profile for a favorable pressure gradient, as shown in
Fig. 2-1, . 'st promote the onset of cavitation. However. this investi-
gation showed that the cavitation number in:reased with the pressure
gradient, which is in contradiction with the characterisiic velocity
theory. This discrepancy may be due to the complicated flow, i.e.,
separated flow, caused by the triangular protrusion.

As discussed in Section 2.3, the shape factors (H) and (G), and
wake parameter (II) can be considered as factors to be related to
pressure gradient. 1In order to obtain the most consistent relationship
between cavitation number and one of these three factors, the calculation
was done hy using the nresent data and did not include the data of
Holl [29]. Fig. 5-12 shows that power-law correlations of glfp with
G and T could he obtained for the present data. The‘correlation
coefficient for eack h/S§ and the average percent error in slope are
0.993 and 18.0%, respectively, for correlation of Ozfp with G and
0.9901 and 21.47% for that of ¢ with II. It is seen that the

Lfp

correlation of Upr with G is more consistent than that of II.

However, Il may be an altemnative parameter to G whereas the parameter
H may be primarily limited to the case dp/dx = O.
Thus, the relationship between the cavitation number <o“fp)

and the shape factor {(G) is expressed for the same relative height

and Reynold's numher in the form

T TR Ry TP T e

SRR E P T R
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- 1.25
Ulfp constant (G} . (5-19)

5.4.3 Effect of Peynold's Number on Cavitation. As indicated

in Section 3.5, Reynold's number based on the boundary layer thickness
is an important parameter. However, the influence of Reynold's

number is less dominant than tbe relative height or the shape facter
(G), as shown in Figs. 5~8 and 5-11. The relationship between the
cavitation number and the Reynold's number for corstantc relative

height and shape factor (G) has the form

+

0.194
dlfp = constant (7?) . (5-20)
Since the exponent 0.194 is close to the va'ue 0.20 determined by
Arnidt et al. [33]), the value O 20 was used throughout this analysis.

Heace

Us 0.20
c%fp = constant (Tj) . (5-21)

5.4.4 The Cavitation Law for Two Dimensional Triangular Protrusions.

The cavitation law for a two dinensional triangular protrusion can

be expressed in the form

0.53 0.2 1.25

h Uus
o.. = C(= — G . 5-22
T c(3) v, (G) ( )

“When appl'ed to the data from this investigation the above correlation
gives a good esti wte of the zavitation number with an average error

of 10.3% with respect to the measured values. The equation is compared

with experimental data in Fig. 5-13.

L B

pore
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Figure 5-13. Cavitation law for Isolated Roughness - (Present
Investigation).
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As shown In ¥ig. 5-14, a fair agreement wac obtained with the
results of Holl fur g& * 0, when corrected to a gas coantent of 3.71

ppa as described in Appendix B.

5.5 Development of the Characteristic Velecity Theory

As discussed in Section 3.4, GQ is expressed as

fp
2
I's :—;l .}lm! h
Jlfp m (6) olfp for z <1 (3-10)
and
8 1 ' h

= - — - - > -

olfp 1 oy (1 H) Gpr for 52 1 (3-11)

where Okfp is the limited cavitation number for the rou; hness in the

absence of a boundary layer, that is, h/8 = ®, For the two dimensional
triangular roughness, Oifp was assumed to be equal to that of a sharp-
edged flat plate obtained by J. W. Holl and C. B. Baker of the Applied
Research Leboratory at The Pennsylvania State University, and is shown

in Fig. 5-15. By the method of least squares, O, was calculated to
8 2pf

be

. 0.424 5_33
ozfp 0.0214 Reh (5-23)

where Reh is the Reynold's number based on the height of the roughness.

Examples of the application of this theory based on equation
(5-23) are shown in Fig. 5-8 fnr the nominal velocities 40, 50 and

60 fps. As shown in Fig. 5-8, it is seen that o, calculated by

~fp

the characteristic velocity theory is in fair agreement with the

experimental data for 0.06 < %/& < 1.79, which was the investigated




al-fp = 0.0157 (h/h)

HOLL (1958) DATA hid (U ) G
OPHASE I ~ FORWARD STA.  0.429~3.400 3.66><102-8,67><102 6.52¢
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® PHASE I FORWARD STA.  (.035-0.524  2.14x10 -6.81x10; 6,510
a REAR STA. 0.014-0.213  5.23x10°-1.51x10° 6,400
101: T A y T
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Figure 5-14., Cavitation Law for Isolated Roughness - (Comparison
of Present Investigation and Hell - 1953),
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region. However, significant differences may occur for cases outside
the scope of the present investigation.
As mentioned in Section 3.4, Holl [4] assumed that the characteristic

length (LC) is closely related to the height of the irregularity (h).

Thus, it was assumed that Lc is equal to h. However, one of the main
reasons for the discrepancy between the result calculated by the

characteristic velocity theory and the experimental data may be due

to the above assumption. Therefore, h in equation (3-10)

should b= changed to Lc as

; 1 Lc i Lc
= = (— ' —_ =24)
o:lfp a (6 ogfp for 3 <1 (5-24)
and
8 i Lc:
= _ S _ L ' _< _
Glfp 1 L 1 H) o0 fp for = >1 . (5-25)

: Furthermore, LC was derived semi-empirically so that good agreement
between the two results could be obtained.

Emplcying equation (3-7) for the experimental value of Olfp

(Oﬁfp-exp) gives
2
. Ue '
' = 5-26
ifp-exp (U ) OQ,fp . ( )
or
U 2 ng

. (=S) o ~ZERZEXP (5-27)
Uoo O"pr
|
3 By employing equation (5-22), one can 2xpress Olfp—exp in the form
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0.5% 2
+ 0.0143 (& (l’;f—s) ) (5-28)

Ozfp—exp'

or for a zero pressuve gradient

“l ‘ . :
= 4 — e N

where G is equal to 6.447,

Substitution of equations (5-23) and (5-29) into eguation (5-27;

results in

U 2 h 0.11 Uw«S -0, 2

s = 7.000 (3 {~) . (5-10)
<U ) 6 W

o

By knowing equation (3-7), and by substituticn of equation (5-30)

into equation (5-24) and equation (5-25) one gets

m - ,.
L = 0.055m U_ 4§ -0.11lm L
£ . m2,2 h s for L < (5-31)
g = (7.00 =97 {3 (=5 for -z <1 (5-31)
and
, L
Lo 2 1 for —5 > 3 (5--32)
5 m+2 L 0.11 0,5 -0,22 8
1 - 7.00(3) \TJ*)

Employing equation (3-12) in equations (5-31) and (%-I2) rasulte in

-0.11m
. . ) L
L = 0.055m o o e
2 — N cuan
xC - (7}{)- (%) ( v ) for Rl 1 05 ‘)")

and




YR PATY
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c 1
N ) for = >1 . (5--34)

Equations (5-33) aad (5-34) indicate that the dimensionless character-
istic length (LC/G) for 4 zero pressure gradient is a function of the
shape factor (H) and the Reynold's number based on the loundary layer
thickness in addition to the dimensionless relative height (h/8).
Equation (5-33) is plotted in Fig. 5-16 ove. a range of parameters
corresponding to Fig. 5-8. It is seen that in order for Lc/é to be
greater than one, h/3 would have to be significantly greater than

one. Furthermore, equations (5-33) and (5-34) are plotted in Fig. S5-17.
They show that the ralationship between Lc/é and h/§ is sensitive to
R&a, especially for the case where Lc/d is greater than one. However,
since these two equations were obtained from the results of chis
investigation over the Re(S range of 3 x th to 2 x 10S and the h/$ range
cf 0.06 to 2.50, care should be taken in using equations (5-33) anc

(5-34} for values of Re,(S and h/8 outside of the aforementicned range

of these parameterd.
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CHAPIER VI

SUMMARY, CONCLUSIJNS znd RECOMMENDATT N

6.1 Summary

The effect of pressure gradient on limited cavitation was
experimentally investigated by using triangular protrusions.

Initially the pressure distribution was obtained in the water tunnel
test section with the curved wall. Then, the velocity profiles of
the boundary layer (8) on a flat plate in the test section were measured
by using a total head tube at seven stacions. The nominal velocity
was 40 fps.

The shape factor (G) and the wake parameter () were calculated
by employing the pressure gradient and the boundayr, layer parameters
with the assistance of computer programs based on the method of
E. Truckenbrndt [35]. In so doing, the values obtained by the method
of E. Truckenb.»dt were used for further analysis, after confirming
that there was an insignificant difference batween the bounuary layer
thickness obtained from the experiment and that obtained from the
method of E. Truckenbrodt.

The limited cavitation numbers were obtained visually employing
the desinence procedure over a range of free strecam velocities for
the various cases of zero, favorable and unfavorable pressure
gradients. The maximum range of the velocity was 30 to 60 fps and the
gas content was maintained less than 5 ppm during the experiment.

Finally, for the case of zero pressure gradient, the effects on

limited cavitation due to the relative height and the Reynold's number

O
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based on the boundary layer thickness were investigated. The power-
law relationship between the cavitation number and the aforemeantioned
two parameters was obtained as ju Ref. [33]., In addition, a

comparison of Og¢  Versus h/&8 as cbtained in this investigation with

fp
that of Ref. [29], corrected to a gas content of 3.7 ppm as described
in Aprendix B was made to obtain a more universal relationship.
Furthermore, the expression for characteristic length (LC), used in
the characteristic velocity theory, was obtained semi-empirically
from the above result.

For the cases of favorable and unfavorable pressure gradients,
the shape factor (G) was found as the best parameter to be related
to pressure gradient. The relationship for zero pressure gradient

was extended to incluvde the influence of shape factor (G) for a flow

with pressure gradient.

6.2 Conclusions

The following conclusions are based on results from the present
investigations:

1. The limited cavitation characteristics of isolated roughness

for a flow without pressure gradient can be represented in the form

aUdb

o

Glfp = constant (?Q ("TTO (6-~1)

where a = 0.53 and b = 0.20 were obtained from the tests of the two
dimensional triangular protrusions in this investigation.
2. The power number ‘'a' from the current investigation was equal

to 0.53 compared to a value of 0.40 obtained in Ref. [33], for a flow

Al s ik s
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without pressure gradient. The difference between the two values
may be due to a differenze in zas content.
3. It was reaffirmed that the characteriztic velocity theory

is a rough estimate of o, for a separated protrusion element.

fp
4. By employing a semi-empirical expression for LC, used in the
characteristic velocity theory, the thenry becomes more accurate for

estimation G2 for the case of a separated protrusion.

fp
5. The effect of p.essure gradient on limited cavitation for the
triangular protrusion contrndicts the characteristirc velccity theory.
This discrepancy may be duc to dicruptions in the local flow caused
by separation from the prutrusion. Separation effects are not accounted
for in the characteristic velocity theory.
6. The shape factor (G) was tne most consistent parameter among
all others considered to be employed as a measure of pressure
gradient effects on the limited cavitation number.
7. Equation (6-1) was extended for a flow with pressure gradient,
to include the influence ¢f shape factor (G), resulting in the general

equat ion

a b e

h Us :
o ¢ ) (© (6-2)

fp T

where C = 0.0143, a = 0.53, b = 0.2 and e = 1.25 were obtained from
the tests of the two dimensional triangular protrusions in this
investigation. This correlation was shown to be in good agreement
with experimental data. It {is felt that equation (6-2) -an be applied
to other types of isolated roughness by varying the constants ¢, a,

b and e, which must be obtained empirically.
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6.3 Recommendations

The following is the 1ist of recommendations:

1. Care should be taken i wsing equation (6-2) for predicting
the cavitation characteristics of &'zface roughness at large values
of the shape factor (G), vhere this relationship may not be valid.
Presently, the estimations obtained with this method are in good
agreement with the data for values of G < 7.647.

2. Visual observaticn of desinent cavitation should be carried
out as far as possible at constunt gas content. However, equation
(5-17) may be useful for correcting for variations ir gas content.

3. The cavitation characteristics of additional roughness
elements, including streamlined surface protrusicns, should be
investigated.

4. To apply the characteristics velocity theory to other types

of surface roughness, one must obtain o} for the particular roughness.

Lfp
For a roughness with separated ilow, Okfp must be obtained experimentally

whereas for the non-separated flow about a roughness one can obtain

Olfp tneoretically.

5. As indicated under item 5 in the counclusions, the discrepancy
between experimental data and the characteristic velocit r theo v may
be due to separation effects. Thus it is recommended that experiments
with various pressure gradients as employed in this investigation be

conducted with a protrusion which produces a nonseparated flow.
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AFPPENDII A

DESIGN OF EXPERIMENT

A.1 Curved Wall

The objective of mounting the curved wall in the water tunnel test
section was to obrain various pressure gradients in the test section.
The minimum pressure coefficient has to be more than -0.4, derived by
the superposition equation, in order to make a successful experiment

in the water tunnel because of pressure limitations.

Originally, a NACA 0013-34 airfoil was selected from reference [37].

Furthermore, the minimum pressure coefficient in this test section was
derived by using a computer program. Unfortunately, the value was
found to be below -0.4, so a curved wall was modified to obtain a
progper value of the minimum pressure coefficient. The configuration
and the pressure coefficient are shown in Fig. 4-5 and Fig. 5-3,

raspectively.

A.2 Triangular Protrusion

After calculating the pressure gradient, seven points were selected
for locating the triangular protrusions. Three of them were located
where the pressure gradient is the maximum, the minimum and zero. Four
other points were selected such that two of them have the same absolute
pressure gradient. The locations of the seven stations are shown in
Fig. A-1.

The heights of the protrusions were selected so that the cavitation
numbers for three cases within the boundary layer and for one case

outside of the bcundary layer could be measured. The boundary layer was
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roughly calculated by using the equation for a flat plate.

schedule of the experiments is shown in Table A-1,

hisioh ki
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TABLE A-1

INITIAL SCHEDULE FOR CAVITATION TEST

STA. I II 111 v \ V1 VII
S8(inch) 0.045 0.095 0.117 0.140 0.167 0.202 0.218
h(inch)

1/100 0

2/100 0

3/100 0 e 0

5/100 0 0 0 0

7/100 0 o 0 0 0 0 0]
10/100 0 0 0 0
15/100 0] 0 0] 0

30/100 0 0 0 0

89



30

APPENDIX B
CORRECTION OF CAVITATION NUMBER FOR A VARIATION IN GAS CONTENT

The effect of gas content for limited cavitation number has been
demonstrated by Billet and Holl [38] as

Op=-C  + — kb (B~1)

min /2 oqi

where 0, B' and k are the dissolved gas content (PPM), Henry's law
constant (PSI/PPM) and an empirical adjustment factor, respectively.
Equation (B~1) was initially proposed by Holl in Ref. (29]. For the

present result and that of Ref. (29], equation (B-1) becomes

kaPB'
0, = - C + — (B-2)
min 1/2 pU

0

or
kaRB'
Og = - CR +— (B-3)
min 1/2 PU
where the subscripts P and R stand for present and Ref. (29],
respectively. ULy using the data of Ref. [29], which were carried
out under the same condition except for the gas content, k can be
expressed by equation (B-~2) in the form
(cRa - ORb) 1/2 o
k = (O R ) - B' [ (B"[")
Ra Rb

where the subscripts o and b are arbitrary numbers. Since these two

experiments were carried out for a water temperature of approximately
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72°F, the Henry's law corstant is

B' = 1.00 (FSI/FPM) . (B-5)

Subst ituting Equation (B-5) into Equation (B--4) gives

(o, -0_)
Ra Rb;puz

Kk = )
(Op, = dgy) 2 7 °

(B-6)
The results are tabulated in Table B-1.
As indicated previously, since the present experiment was carried

out with almost the same gas content, the mean value in the present

experiment was used as aP. Thus,

n

T (OLP)i
_ i=1 = b -
0 = =7 = 3.7 (PPM) . (B-7)

The cavitation number of Ref. [29], corrected for the reference gas

content corresponding to the present Inves:igations, OR-corr is
S

expressed in the form of

L
k(ozR - aP)B
A (5-8)
e 1/2 pu
Employing equatijons (B~S5) and (B-7) in equation (3-8) gives
k(o ~ 3.71)
Ipec = g - —-‘“L.—Z*‘-"""‘ (5-17)
~Corr R 1/2 an

where k is 0.104.

——- -



TAELE B-1

CONSTANT (k) FOR EFFECT OF GAS CONTENT

DATA U (Op, = Oy

SET h/ 8 (fps) (PPM)

20

1 0.0634 30 10.12
40
50

20

2 0.2480 30 4.49
40
50

20

3 0.2480 30 7.58
40
50

20

4 0.5030 30 10.03
40
50

AVERAGF.

0.048
0.072
0.088
0.091

0.005
0.030
0.154
0.117

0.131
0.166
0.075
0.286

0.028
0.N67
G.0A4
0.234

0.104
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